Search results for "Many-body theory"
showing 10 items of 21 documents
Neutrino energy reconstruction and the shape of the charged current quasielastic-like total cross section
2012
We show that because of the multinucleon mechanism effects, the algorithm used to reconstruct the neutrino energy is not adequate when dealing with quasielastic-like events, and a distortion of the total flux-unfolded cross-section shape is produced. This amounts to a redistribution of strength from high to low energies, which gives rise to a sizable excess (deficit) of low (high) energy neutrinos. This distortion of the shape leads to a good description of the MiniBooNE unfolded charged current quasielastic-like cross sections published by A. A. Aguilar-Arevalo et al. [(MiniBooNE Collaboration), Phys. Rev. D 81, 092005 (2010)]. However, these changes in the shape are artifacts of the unfol…
Comparative analysis of muon-capture and 0νββ-decay matrix elements
2020
Average matrix elements of ordinary muon capture (OMC) to the intermediate nuclei of neutrinoless double beta (0νββ) decays of current experimental interest are computed and compared with the corresponding energy and multipole decompositions of 0νββ-decay nuclear matrix elements (NMEs). The present OMC computations are performed using the Morita-Fujii formalism by extending the original formalism beyond the leading order. The 0νββ NMEs include the appropriate short-range correlations, nuclear form factors, and higher-order nucleonic weak currents. The nuclear wave functions are obtained in extended no-core single-particle model spaces using the spherical version of the proton-neutron quasip…
Theoretical uncertainties on quasielastic charged-current neutrino–nucleus cross sections
2006
We estimate the theoretical uncertainties of the model developed in Phys. Rev. C70 055503 for inclusive quasielastic charged-current neutrino-nucleus reactions at intermediate energies. Besides we quantify the deviations of the predictions of this many body framework from those obtained within a simple Fermi gas model. An special attention has been paid to the ratio \sigma(\mu)/\sigma(e) of interest for experiments on atmospheric neutrinos. We show that uncertainties affecting this ratio are likely smaller than 5%
Asymptotic normalization coefficients and continuum coupling in mirror nuclei
2012
Background: An asymptotic normalization coefficient (ANC) characterizes the asymptotic form of a one-nucleon overlap integral required for description of nucleon-removal reactions. Purpose: We investigate the impact of the particle continuum on proton and neutron ANCs for mirror systems from $p$- and $sd$-shell regions. Method: We use the real-energy and complex-energy continuum shell model approaches. Results: We studied the general structure of the single-particle ANCs as a function of the binding energy and orbital angular momentum. We computed ANCs in mirror nuclei for different physical situations, including capture reactions to weakly-bound and unbound states. Conclusions: We demonstr…
Many-particle Green's functions
2013
Linear response theory: many-body formulation
2013
Correlating Schiff Moments in the Light Actinides with Octupole Moments
2018
We show that the measured intrinsic octupole moments of $^{220}$Rn, $^{224}$Ra, and $^{226}$Ra constrain the intrinsic Schiff moments of $^{225}$Ra$^{221}$Rn, $^{223}$Rn, $^{223}$Fr, $^{225}$Ra, and $^{229}$Pa. The result is a dramatically reduced uncertainty in intrinsic Schiff moments. Direct measurements of octupole moments in odd nuclei will reduce the uncertainty even more. The only significant source of nuclear-physics error in the laboratory Schiff moments will then be the intrinsic matrix elements of the time-reversal non-invariant interaction produced by CP-violating fundamental physics. Those matrix elements are also correlated with octupole moments, but with a larger systematic u…
Correlating Schiff Moments in the Light Actinides with Octupole Moments
2018
Fractional Periodicity of Persistent Currents: A Signature of Broken Internal Symmetry
2003
We show from the symmetries of the many body Hamiltonian, cast into the form of the Heisenberg (spin) Hamiltonian, that the fractional periodicities of persistent currents are due to the breakdown of internal symmetry and the spin Hamiltonian holds the explanation to this transition. Numerical diagonalizations are performed to show this explicitely. Persistent currents therefore, provide an easy way to experimentally verify broken internal symmetry in electronic systems.
Many-body Landau-Zener effect at fast sweep
2005
The asymptotic staying probability P in the Landau-Zener effect with interaction is analytically investigated at fast sweep, epsilon = pi Delta^2/(2 hbar v) << 1. We have rigorously calculated the value of I_0 in the expansion P =~ 1 - epsilon + epsilon^2/2 + epsilon^2 I_0 for arbitrary couplings and relative resonance shifts of individual tunneling particles. The results essentially differ from those of the mean-field approximation. It is shown that strong long-range interactions such as dipole-dipole interaction (DDI) generate huge values of I_0 because flip of one particle strongly influences many others. However, in the presence of strong static disorder making resonance for indiv…